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Abstract. In the context of range-independent solid media, we propose a well-conditioned
dynamic stiffness matrix for an elastic layer sitting over an elastic half-space. This formula-
tion overcomes the well-known problem of numerical ill-conditioning when solving the system
of equations for deep-layered strata. The methodology involves the exact solutions of trans-
formed ordinary differential equations in the wavenumber domain, namely a projection method
based on the transformed equations with respect to the depth coordinate. By re-arranging the
transformed equations, the solutions remain numerically well-conditioned for all layer depths.
The inverse transforms are achieved with a numerical quadrature method and the results pre-
sented include actual displacement fields in the near-field of the load in plane-strain and three-
dimensional axisymmetric cases. Verification against finite element method (FEM) calculations
demonstrates the performance and complexity of the two approaches.
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1 INTRODUCTION

A three-dimensional axisymmetric model is considered which demonstrates the effect of a
harmonic finite rigid disk-load over various layered strata. The results derived by Fourier trans-
formation are valid for any frequency and, more importantly, for any depth of the layer. In prin-
ciple, following the well-known traditional methods, [1], we could use displacement-continuity
and traction-equilibrium boundary conditions at the bottom and top of a layer with equations at
the ground surface to generate equations for six subsequent unknowns of stress and displace-
ment. However, this direct approach leads to formidable numerical problems. The reason for
this work is that if traditional expressions for the characteristic wave functions, such as cosh or
sinh, are employed, these can have a dramatic effect on the numerical evaluation of solutions.
Problems arise due to the cancellation or division of either very small or very large numbers.
To overcome this, Karasalo [2] derived a well-conditioned propagator matrix for radially sym-
metric problems. Recent advances in propagator-matrix techniques have proved successful, [3]
and [4]; but we derive a simple and robust technique. In this work, then, we construct a single
stiffness matrix for the physical layer for plane-strain problems which conveniently avoids these
difficulties. We therefore deduce a new global dynamic stiffness matrix for functions that do
not cause numerical problems on a desktop PC.

Although not developed in this work, solutions to characteristic equations, such as disper-
sion equations, which establish wave propagation parameters, can now be determined more
efficiently. Similar work in this area for dynamic problems where the load is stationary has
been presented in [6] or for general moving-load problems in [7]. In this work we show how
we are able to solve large (read: deep) problems, due to the reduced number of equations.

2 VIBRATION TRANSMISSION

The model considered is shown in Figure 1(a). A rigid disk load has a radius b > 0, with
respect to the r-axis. It rests on homogeneous, isotropic, axisymmetric elastic layers, with
material properties E (Young’s modulus), ρ (density) and ν (Poisson’s ratio). A harmonic
vertical load acts uniformly over the disk. A submerged elastic layer (the concrete block) of
finite depth,H > 0, of homogeneous and isotropic material then overlies a half-space of flexible
material. The block is considered as a finite-width disk, radius L > 0, or as having infinite
width, which is a similar problem to one studied in [8].

2.1 Geometry

The problem is solved semi-analytically by a numerical quadrature method suited for oscilla-
tory integrands and, for verification and parametric analysis, by COMSOL 5.2 Solid Structures
analysis. For the benefit of the reader, Fig. 1(b) includes an illustration of a typical mesh for the
problem in the axisymmetric case. The model has 37, 454 degrees of freedom (d.o.f.), 4, 064
domain elements, and 611 boundary elements with cubic shape functions. In this example, the
perfectly matched layer (PML) region surrounds the solution zone at R = 75.0 m, and receiver
positions of interest are at R1 = 4.0 m, R2 = 16.0 m, and R3 = 32.0 m.

2.2 Theoretical background

Much of the analysis necessary for the derivation of the dynamic stiffness matrix has been
presented in references [9] and [10], so this will only be briefly summarized. For plane strain,
the behaviour of the isotropic elastic material is described by Navier’s elastodynamic equations,
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(a) (b)

Figure 1: The schema for the two approaches: (a) For the semi–analytical domain, block has radius L → ∞;
(b) Axisymmetry model from COMSOL 5.2 showing the block of finite radius L = 70 m penetrating the PML
region within the finite element mesh.

[9]. In the absence of body forces, these can be written as:
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where u, w are the components of the displacement in the r and z directions and e is the volume
strain, and λ, µ are complex Lamé constants assuming a constant loss-factor damping model.
The quantities c1 and c2 are, respectively, the P and S wave speeds, given by:
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and the boundary conditions for this problem are a uniform rigid disk-load of width b acting
over the surface and at, for the example given here, at z = H1, z = (H1 +H2) continuity of
displacement and equilibrium of traction between the mid-layer and the upper and lower media.
Equations (2) may be solved by introducing potentials φ and H such that
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Also, assuming harmonic time-dependence eiωt and axial symmetry of the problem, this
suggests seeking solutions in the form of Hankel integrals. For this purpose, the following
Hankel transforms are introduced, assuming ζ is the transform variable:

U =
∫ ∞
0

u rJ1(ζr) dr and W =
∫ ∞
0

w rJ0(ζr) dr, (5)

Taking the Hankel transform of the frequency version of equations (1) and (2) leads to a coupled
set of ordinary differential equations.
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Soil Upper–layer and half–space Embedded block
Soft soil–type Concrete

E (Pa) 2.69× 108 204× 108

ρ (kg m−3) 1550 2450
ν 0.257 0.179
cR (m s−1) 242 1706
c2 (m s−1) 263 1879
c1 (m s−1) 459 3005

Table 1: Material properties

It is common practice to write solutions to the ensuing ordinary differential equations over
a finite-length domain, z ∈ [0, D] in terms of cosh and sinh functions. For computational
purposes, this choice of characteristic functions is not convenient for problems involving spatial
domains chosen to be extremely deep. Hence, we propose the general solutions may be written
as a scaled formulation:

φ = A1 e
−α1z + A2 e

α1(z−D), 0 ≤ z ≤ D

(8)
H = B1 e

−α2z + B2 e
α2(z−D), 0 ≤ z ≤ D.

α2
1 = ζ2 − k21 and α2

2 = ζ2 − k22.

The reasons for choosing the scaled exponential characteristic functions over the hyperbolic
functions is clear. Essentially, this choice ensures the characteristic functions do not grow
unbounded with depth. Substituting the values z = 0 and z = D into the equations (8) yields
the first matrix equation

{u} = [C] {A} . (9)

where u = [iw0, u0, iwD, uD]
T and the 4 × 4 complex-valued matrix [C] is given by
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Now, further developing the system of equations, we get

{σ} = [S] {A} , (11)

[S] =


−iα2

1β + iλζ2 (−iα2
1β + iλζ2) g1 −2µζα2 2µζα2ζg2

2iµζα1 −2iµζα1ζg1 µ (α2
2 + ζ2) µ (α2

2 + ζ2) g2
i (α2

1β − λζ2) g1 i (α2
1β − λζ2) 2µζα2g2 −2µζα2

−2iµζα1g1 2iµζα1 −µ (α2
2 + ζ2) g2 −µ (α2

2 + ζ2)

 (12)

with β = λ + 2µ, gi = e−αiD, i = 1, 2, and σ = [−iσ0, −τ 0, iσD, τD]T . We now combine
equations (9) and (11), to arrive at a single matrix expression which expresses the displacements
and stresses at the surface and the interface in the wavenumber domain:

[T ] {u} = {σ} . (13)
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where [T ] = [S][C]−1. The entries of the matrix [T ] are provided in the work of Peplow, [5].
Specifically, [T ] is the dynamic stiffness matrix for a single elastic layer, valid for any layer-
depth D > 0. To include the half-space, we utilize the matrix equations presented in [10],
which leads to a matrix system:
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1
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[
(λ+ 2µ)α2k

2
1 2µζ(α1α2 − ζ2) + (λ+ 2µ)ζk21

2µζ(α1α2 − ζ2) + µζk22 µα1k
2
2

] [
iwD
uD

]
=

[
iσD
τD

]
(14)

where DET = 1/(α1α2 − ζ2) and it is understood the soil parameters are related to the half-
space below the upper layer.

Equations can now be combined to give a single matrix equation for an elastic layer over an
elastic half-space, involving the scaled stiffness matrix for the elastic layer [Tij] and the matrix
for the half-space [Pij]. The general matrix form for any global domain becomes a 4×4 complex
valued matrix:

[T ]G =


T T T T
T T T T
T T T -P T -P
T T T -P T -P

 (15)

It is straightforward then to generalise this technique to n elastic layers over a half-space, where
the size of the dynamic stiffness matrix will become a single complex-valued 2(n+1)×2(n+1)
matrix. On our case we have essentially two layers on a half-space (n = 2), which results in a
6× 6 system.

3 NUMERICAL COMPUTATIONS

Generally, for non-dimensional wavenumbers ksh ≥ 13, where ks is the shear wavenumber,
the conventional approach “breaks down”. That is, for depths greater than around two shear
wavelengths, h ≥ 2λs, a numerical bottleneck problem arises when solving the linear system of
algebraic equations. Equally, for high frequencies, computations can become ill-conditioned.
The choice of projected method permits a stable numerical evaluation for entries in the stiffness
matrix for all soil types, frequencies and layer depths. This avoids numerical round-off errors.

It was found that numerical inversion of the Hankel transforms worked well with a cut-off at
R = 20 m−1 with 2, 000 sample points spaced logarithmically in the interval ζ ∈ [10−4, R]. Fast
numerical Hankel methods, similar to Fast Fourier Transform (FFT), which are freely available,
were not used in this work since our interest is in a few receiver positions.

4 RESULTS

Soil parameters used are presented in Table 1, that is two sets of soil characteristics which
represent different conditions, soil and concrete. The response has been calculated for a disk-
load with b = 1.0 m and subjected to a uniform unit load, P = 1 N. Calculation times for
100 frequency points on an i3-chip desktop took around 3.0 minutes in total. Integration was
not particularly slow due to the modes associated to the deep bedrock stratum. Numerical
integration is possible for all deep models and it is recommended to include an underlying half-
space for computational and realistic modelling purposes, since bedrock models will include
many modes.

Nonetheless the results presented are calculated using the Clenshaw–Curtis numerical quadra-
ture method. The related ground parameters are shown in Table 1. The configuration is an elastic
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circular block layer embedded 7.0 m deep within a half-space. To verify results of the simple
model, we compare with a numerical scheme provided by COMSOL 5.2, see Fig. 1(b).
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Figure 2: Verification of the method compared to a PML version in COMSOL 5.2 for: (a) and (b) 0.5 m deep
embedded concrete block; and (b) and (c) a 2.0 m embedded block.

Our approach, as a possible measure for mitigating vibration, is based on the impeding be-
haviour of a soil layer over a bedrock. It occurs if the excitation frequency is below the lowest
eigenfrequency of the layer. Since it is not convenient to develop real bedrock layers below
buildings, where the length of the block in Fig. 1 tends to infinity, for example, we may use a
stiff finite-length obstacle as an artificial bedrock instead. The results correspond to the possible
positive effect for replacing bedrock by a feasible concrete block. For a bedrock layer at depth,
H = 7.0 m, the first eigenfrequency related to shear waves is around 10 Hz. We only show
two examples where the rigid bedrock is approximated by a concrete block, 0.5 m thick, with
various lengths and evaluated at three receiver positions.

Figures 3(a) and (b) correspond to amplitude increase or decrease, against the half-space
response, as the thin 0.5 m concrete block increases width from L = 2.0 m, to L = 4.0 m
to L = 12.0 m with respect to the receiver position 4.0 m from the load-centre. For both
vertical and longitudinal motion we observe a characteristic dip in insertion loss below the
cut-on frequency with a slight insertion loss up to 2 dB performance in the interval 20 Hz to
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40 Hz. A concrete block of length 12.0 m appears to approximate well as a substitute for an
infinite layer. Figures 3(c) and (d) correspond to amplitude increase or decrease as the thin 0.5
m concrete block increases width from L = 8.0 m, L = 16.0 m to L = 24.0 m with respect to
the receiver position 16.0 m from the load–centre. Here, the complex interactions below cut-
on are evident, again a possible 2 dB insertion loss between 20 Hz and 40 Hz seems possible.
Figures 3(e) and (f) correspond to amplitude increase or decrease as the thin 0.5 m concrete
block increases width from L = 24.0 m, L = 32.0 m to L = 40.0 m with respect to the receiver
position 32.0 m from the load-centre. As the receiver position increases its distance from the
load, the concrete block, substituting a rigid layer foundation, also requires greater length Again
the possible effectiveness as a mitigation device reduces to below 40 Hz.

5 CONCLUSIONS

An axisymmetric three-dimensional model has been developed for investigating the propa-
gation of surface vibration over arbitrary-depth elastic layers. The model consists of an elastic,
isotropic and homogeneous layer which overlies a half-space. A well-conditioned dynamic
stiffness matrix has been developed for this model, which is derived by considering a different
set of characteristic functions.

We have shown that by including a bedrock foundation buried under a surface load this can
have a positive effect in reducing vibration across the surface of the ground, in certain frequency
bands. However, below the cut–on frequency, in which travelling waves cannot propagate, the
effectiveness is difficult to assess.

Rather than turning to large-scale finite element models we have shown that it is possi-
ble to draw conclusions for vibration reduction assessments from an alternative general semi-
analytical model. In future work we shall extend the semi-analytical model illustrated in this
work from the axisymmetric case to general three-dimensional models.
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