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Abstract 

This paper presents a predictive model for evaluating the central tendency and related record-
to-record variability for the residual displacements of simple inelastic oscillators under seismic 
excitation. For this study, yielding single-degree-of-freedom systems were considered, with 
bilinear backbones and non-degrading hysteretic rule characterized by peak-oriented reloading 
stiffness. Systems with natural periods belonging to the 0.3 s to 2.0 s range and exhibiting post-
yield hardening ratios ranging from 0 to 10%, were analyzed via incremental dynamic analysis 
to obtain the residual displacements as a function of the ductility demand. A set of fifty 
acceleration records was used for the dynamic analysis, coming from medium-to-large 
magnitude events, recorded at the closest distance to the rupture surface ranging from 3.5 km 
to 43.7 km on firm soil or rock and devoid of apparent directivity effects of interest for seismic 
response. The model fitted on these results, consists of two regression equations: one equation 
for the period elongation given ductility demand and another for the residual displacement ratio 
given period elongation and ductility demand.  
In this context, the residual displacement ratio is defined as residual-to-peak inelastic 
displacement. Thus, the model allows to assess the joint conditional distribution of period 
elongation and residual displacement at fixed ductility levels. These results could be useful for 
seismic reliability assessment for structures accumulating damage, for example during seismic 
sequences, where the seismic fragility of a structure damaged during a mainshock earthquake 
comes into play for risk calculations during the ensuing aftershock sequence. 
 
 
Keywords: residual displacements; sequence-based seismic reliability; state-dependent 
seismic fragility. 
 

 



M. Orlacchio, G. Baltzopoulos and I. Iervolino 

1 INTRODUCTION 

Within the Performance-Based Earthquake Engineering (PBEE; [1]) paradigm, the 
probabilistic assessment of a structure’s residual displacement is of interest, in addition to the 
peak (transient) deformation demand, because the former can be useful in modelling the 
performance of structures during a seismic sequence, when these structures have been already 
damaged by the mainshock earthquake. In fact, the residual displacement is a response 
parameter closely related with the remaining capacity of mainshock-damaged structures to 
withstand aftershock sequences [2,3]. In this context, the residual deformation was established 
over the last years as a useful index of the severity of inelastic response, complementary to 
maximum transient response. Moreover, its amplitude can be used to determine the technical 
and economic feasibility of repairing seismic damages because of the difficulty to reverse 
permanent displacements [4]. Thus, several previous studies were focused on individuating the 
parameters that primarily affect residual displacement, and a few investigations also presented 
simple predictive equations for residual displacements.  

Some early observations about residual displacement demands were provided by Mahin and 
Bertero [5] who found that the permanent displacements of elastoplastic systems averaged more 
than forty-percent of the peak inelastic displacement demand with high level of variability 
(coefficients of variation associated with residual displacements close to unity). 

An early residual displacement predictive procedure was provided by MacRae and 
Kawashima [6]. They studied residual deformation demands of bilinear single-degree-of-
freedom (SDOF) systems with several values of post-yield stiffness ratio, under three ductility 
demands. They pointed out the influence of post-yield stiffness ratio on the amplitude of 
residual displacements introducing a method for estimating the average value of residual 
displacements only dependent on the post-yield hardening ratio and the ductility demand, 
without identifying a clear trend with the structural period of natural vibration. Moreover, they 
proposed residual displacement response spectra for bilinear oscillators with varying post-yield 
hardening ratio [7]. The dependence of residual displacements amplitude on ductility demand 
and mainly on post yielding stiffness was also confirmed by Borzi et al. [8]. 

Subsequently, Pampanin et al. [9] studied residual displacements normalized by peak 
inelastic displacement demand of four equivalent SDOF systems representative of reinforced 
concrete (RC) frame buildings. They considered three hysteretic models (evolutionary and non-
evolutionary) and different post-yielding stiffness ratios. These authors observed that the 
residual deformation demand depended on the type of hysteresis, seismic intensity and post-
yield stiffness ratio.   

Ruiz-Garcia and Miranda [4,10] studied the influence of several factors on the residual 
displacement ratio rC , which they defined as the ratio of residual-to-maximum elastic 

displacement. These factors included period of natural vibration, lateral strength ratio, site 
conditions, earthquake magnitude, distance to the source, post-yield stiffness ratio and 
unloading stiffness. In that investigation residual displacement ratios were computed for 
elastoplastic, bilinear SDOF systems with kinematic strain hardening and for SDOF systems 
with three stiffness-degrading hysteretic models. They observed rC  to strongly depend on the 

lateral strength and on period of natural vibrations mainly for periods shorter than about 1.0 s. 
They also highlighted that residual displacements ratios exhibit record-to-record variability that 
should also be accounted for. Moreover, a simplified equation to estimate the central tendency 
of residual displacement demands for elastoplastic systems was suggested in [4], as function of 
two independent variables, period of natural vibration and strength ratio.  
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A detailed study about the influence of the hysteretic law on residual displacements was 
performed by Liossatou and Fardis [11]. They used hysteretic models which represent the cyclic 
degradation of stiffness and strength that is typical of RC structures. The scatter in residual 
displacements was also quantified providing at different periods of natural vibration.  

The objective of this study is to present a predictive model for the central tendency and 
related record-to-record variability of residual displacements for SDOF bilinear systems with 
non-degrading hysteretic rule, characterized by peak-oriented reloading stiffness. To this end, 
the constant-ductility residual displacement ratio is investigated, defined as the absolute value 
of the ratio of residual to peak transient displacement, maxresC   , where res  and max
preserve their sign. This ratio is calculated for various combinations of input motion, natural 
vibration period and post-yielding hardening ratio. In all cases, ductility demand   (defined as 
the ratio of maximum response to yield displacement of the intact system, max y   ) is held 

constant by appropriately scaling the input motion. Because it is typical to define the damage 
state of a structure based on crossing maximum transient displacement thresholds (e.g., 
[12,13]), this constant-ductility approach could be useful in the context of simplified estimation 
of state-dependent seismic fragility [2,3,14]. The main result of the study is a predictive 
equation for C , derived via two-stage regression [15].  

The article is structured as follows: first the analysis methodology is outlined describing the 
properties of the analyzed systems and the organization of the analyses used to collect the data 
set. The next two sections are dedicated to the detailed description of the predictive model 
development, presenting first the model for residual displacement and secondly the model for 
period elongation. Finally, the evaluation of the predictive model effectiveness is presented 
along with some evaluation and discussion of the obtained results. 

2. ANALYSIS METHODOLOGY 

In order to collect the required data on which to base the predictive model, yielding single-
degree-of-freedom systems with bilinear backbone and modified Ibarra-Medina-Krawinkler 
(IMK) hysteretic model [16] were analyzed. Figure 1a shows an example of bilinear backbone 
and hysteresis in dimensionless  ,R  coordinates, where    

y
R Sa T Sa T  is the strength 

ratio, defined as the ratio of spectral acceleration intensity to its value causing yield or, 
equivalently, the ratio of the elastic force over the yield base shear of the system, and   is the 
ductility demand. The backbone starts elastically and presents a following hardening segment 
with a slope h , representing the ratio of post-yield stiffness to elastic stiffness, which ends at 

the capping point ductility c  where the loss of strength begins. Figure 1a reports a descending 

branch too, defined by the post-capping slope c , the ratio of the negative post-capping 

stiffness to elastic stiffness, and the fracture ductility, f , point corresponding to complete loss 

of strength. This latter branch was defined exclusively for keeping track of the capping points 
in the damaged post-shock state, whilst only considering target ductility demands lower than 
the capping ductility during the execution of nonlinear dynamic time-history analyses. Figure 
1b shows the modified IMK hysteretic model with peak-oriented response (presented in detail 
in [17]). This hysteretic model is characterized by peak-oriented reloading stiffness; therefore, 
the direction of the loading path targets the maximum displacement on the opposite side once 
the horizontal axis is intersected in each reloading cycle. Although the model can include cyclic 
deterioration modes, in this study it was implemented without considering any degradation rules 
for strength and unloading stiffness.  
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Figure 1: Backbone curve and non-degrading Modified Ibarra Medina Krawinkler (IMK) peak-oriented 

hysteretic model in dimensionless  ,R  coordinates: backbone curve with defining parameters and an example 

of hysteresis for the case with 1.0T s , 2.0%h  and 5.0  (a); representation of IMK hysteretic model 

with peak-oriented response (b). 

The residual displacements of the SDOF systems were computed using a set of analyses 
organized in two different phases. The first phase consists in the execution of incremental 
dynamic analysis (IDA) [18] fixing the target ductility  , which defines the damage state 
reached by the structure during the earthquake. In this phase, the SDOFs are subjected to a suite 
of fifty earthquake ground motions selected from within the NESS dataset [19]. These ground 
motions were recorded on firm soil at a closest distance to the rupture surface ( RUPR ) ranging 

from 3.5 km to 43.7 km and coming from seismic events with moment magnitude belonging to 
the 6.1-7.6 range. Furthermore, the selected records exhibit PGA ranging from 0.053 g to 1.43 
g and are devoid of apparent directivity effects. IDA involves performing a set of nonlinear 
dynamic analyses using each record scaled in amplitude to increasing levels of intensity, 
represented by an intensity measure (IM), to reach or pass the limit of engineering demand 
parameter (EDP), the structural response corresponding to the level of ductility demand for 
each damage state. Thereby a scale factor (SF) for each accelerogram is evaluated to bring the 
response of the structural model to a fixed damaging level. The second phase consists in 
obtaining multiple realizations of the SDOF structure in post-mainshock damage state by 
performing non-linear dynamic analysis, using the records scaled by the SF calculated in the 
previous phase. Subsequently a static pushover analysis up to the collapse is performed for each 
realization, in both positive and negative direction of the load. 

The performed analyses differ in the assumed values of ductility demand  , period of 

natural vibration T and post-yield hardening ratios h  of SDOF systems. Ductility demand  

assumed the following values  1.5,2.0,3.0, 4.0,5.0,6.0,7.0,8.0,9.0  . The analyzed 

oscillators had a fixed backbone as shown in Figure 1. In detail, the bilinear backbone was 
defined assuming period, in seconds,  0.3,0.6,0.9,1.0,1.2,1.5,1.8,2.0T  , and hardening 

stiffness assuming the following percentage values with respect to the initial (elastic) one 

 0.0,0.5,1.0,2.0,3.0, 4.0,5.0,10.0h  . Setting the elastic stiffness and the period of natural 

vibration, the mass of the system for each single case was consequently computed. A viscous 
damping ratio 5.0%   was used and kept constant throughout the time-history analyses. 
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The analyses were performed in order to study the variation of the backbone-defining 
parameters, following seismic damage. Large inelastic deformations during strong ground 
shaking leads SDOF systems with modified IMK hysteretic model to have residual 
displacements and elongation of natural vibration periods. The residual displacement at a 
certain ductility demand depends on the hysteretic characteristics of the system and it 
determines the remaining ductility capacity of the post-mainshock structure. The period 
elongation is caused by the reduction of the peak-oriented reloading stiffness which evolves 
according to the modified IMK hysteretic model reported in Figure 1b. Therefore, the structure 
from the natural vibration period T , in intact conditions, reaches by effect of the mainshock an 
elongated period elonT . This elongated period is calculated from the post-shock reloading 

stiffness at the end of the dynamic analysis, psk  as 2elon psT m k   . Figure 2 shows the 

effects of seismic damage on the structural backbone for an analyzed case, where psk  is evident 

from the slope of the pushover at the end of the excitation . In particular, Figure 2a shows the 
initial and post-mainshock backbones of a single SDOF system, highlighting the residual 
displacement and the elastic stiffness variation of the SDOF structure in its post-mainshock 
damage state, whereas in Figure 2b, the post-mainshock-damage-state realizations of the same 
SDOF structure under four accelerograms of the fifty-record set are shown, revealing the 
record-to-record variability. 

 

Figure 2: Examples of an SDOF structure’s monotonic pushover (backbone) curve before and after the seismic 
damage in  ,R  coordinates. Intact-structure backbone (dark line) and post-mainshock backbone (red line with 

pre-yield stiffness psk ,intersecting the zero-force horizontal axis at  res ) for a generic analyzed case (a); post-

mainshock backbones and residual displacements of an SDOF system with 1.0T s  and 2.0%h  , evaluated 

for four different records scaled to cause ductility demand 5.0   (b). 

3. PREDICTIVE MODEL FOR THE RESIDUAL DISPLACEMENT 

During the investigation a total of 28800 elongated periods elonT  and constant-ductility 

residual displacement ratios C  were computed for peak-oriented bilinear systems, 

corresponding to fifty acceleration time histories, eight periods of natural vibration, nine levels 
of ductility demand and eight post-yield hardening ratios, and then processed to obtain the 
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predictive model. The highest C  value encountered among these results was 0.52. In 

subsequent elaborations, it was found useful to express these results in terms of the relation 
between the ratio of residual to peak transient displacement maxres   (preserving the sign of 

both res and max so that the ratio becomes negative when the two are in opposite directions) 

and  ln T T , where elonT T T    denotes the difference between the elongated post-

mainshock period and the initial period. It was observed that maxres  exhibits persistently high 

negative linear correlation with  ln T T  for varying T ,   and h . In particular, values of 

the correlation coefficient  between  ln T T  and maxres  ,   (see for example [20]), range 

from -0.50 to -0.99 with 0.7    for the majority of analyzed cases (with 0.5 0.7     only 
in a few cases characterized by high ductility demands, 7.0  , and long periods of natural 
vibration, 1.8T s ).  

 

Figure 3: Examples of regression of maxres   against  ln T T  highlighting their (negative) linear correlation. 

Case of SDOF system with 1.0%h  , 1.0T s  and 5.0   (left); case of SDOF system with 5.0%h  , 

0.6T s  and 6.0   (right). 

This linear trend, examples of which are shown in Figure 3, motivates the adoption of a 
linear  model for C ,  whose slope and intercept are functions of the ductility demand   and 

the post-yield hardening ratio h . The proposed model is given by Equation (1): 

          2

1 2 3 4 5 61 1 1 ln 1h h C

T
C

T                                     
 (1) 

where   is the standard Normal variable and the parameters i ,  1,2,...,6i  are coefficients 

estimated by means of robust regression of maxres   against  ln ,  , hT T    using iteratively 

re-weighted least squares with bisquare weighting [20]. The standard deviation of the regression 
residual, C

 , was found to be non-constant, varying with T ,   and h  (yet the residual can 

be assumed homoscedastic with  ln T T  conditional on fixed values of the other independent 
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variables). Thus, C
  was also modelled analytically to account for this dependence (to follow). 

It should be mentioned that despite the perceived dependence of C
 on the oscillator’s initial 

vibration period T , such dependence was not included in the expectation function of C . In 

fact, according to the executed F-test [20] the null hypothesis that the slope of an additional 
linear term of T is zero, could not be rejected at the 5% significance level. Table 1 provides the 
parameter estimates for i  appearing in Equation (1). 

1  2  3  4  5  6  
-0.1124  -0.1867 0.0094 0.1308 -0.6385 -0.3361  

Table 1. Coefficient estimates in Equation (1). 

Figure 4 shows the model for the mean of the constant-ductility residual displacement ratio for 
the cases with post-yield hardening ratio equal to 0.0% and 10.0%. 

 

Figure 4: Central tendency of the model for the residual displacements. Case with 0.0%h   (left); case with

10.0%h   (right). 

As already mentioned, non-constant variance of the residuals was dealt with by modelling C


by means of least-squares curve-fitting of an analytical expression, with parameters i , 

 1,2,...,7i  , to the regression residuals for the various T ,   and h  values, given in Equation 

(2): 

 
 

       
1 2

2

3 4 5 6 7

1  , when 0

1 1 1 1  , when 0

h

C

h h h h

T

T T

   


           

     
                

 (2) 

Due to the peculiar nature of increased response dispersion, as the post-yield stiffness of the 
systems goes to zero (due to the drifting effect observed for elastoplastic oscillators; e.g., [21]), 
Equation (2) provides separate equations for C

  in case of 0h   and 0h  . Table 2 provides 

the fitted parameter values of i  for Equation (2). 
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1  2  3  4  5  6  7  

0.0090 0.0182 0.0402 0.0080 -0.0035 0.0535 0.4413 

Table 2. Coefficient estimates of C
 in Equation (2). 

Figure 5 shows the two model of standard deviation C
 in case of post-yield hardening ratio 

equal to 0.0% in Figure 5a and equal to 3.0 % in Figure 5b.  

 

Figure 5: Models of standard deviation C
 . Case with 0.0%h   (left); case with 3.0%h   (right). 

4. REGRESSION MODEL FOR PERIOD ELONGATION 

The regression model for mean constant-ductility residual displacement ratios, given by 
Equation (1), is conditional on  ln T T , which is also a random variable due to record-to-

record variability. However, the results indicate that, given  , h  and T ,  ln T T  is 

conditionally independent of C . Thus, in order to complete the predictive equation for residual 

displacements, an additional separate model for period elongation is needed to provide the 
conditional distribution of  ln T T . The model for period elongation provides the period of 

the damaged structure elonT  at a fixed damage state represented by  , given initial 

characteristics of the structure T  and h . The analyses results were studied plotting in log-

space the T T  versus the ductility demand  1  , and assessing the dependence on 

independent variables T and h . The data showed a linear trend in log-space to each pair of T

and h , therefore the model was realized fitting a straight line by ordinary least squares 

regression. The central tendency of  T T  resulted independent of the period of natural 

vibration T itself, whereas was strongly dependent on the post-yield hardening ratios h . Thus, 

the regression model proposed for period elongation uses only h  and   as predictor variables. 

A linear model was assumed, as reported in the following equation:  
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      1 2 3 4 lnln ln 1         

            
 

h h T T

T

T
 , (3) 

where   was already defined as the standard Normal variable and  ln T T   represents the 

standard deviation of the regression residual, which was, also in this case, non-constant. It 
should be noted that, despite the Gaussian assumption for  , for this type of hysteretic model 
and given   and h , T T  cannot exceed the value  max

T T  given by Equation (4): 

 
 

 max

2 1 1
1

1 1

  
 

    
      

h

h

T

T
  (4) 

 As reported in Equation (3), the slope and the intercept of the model for period elongation are 
only dependent on h . The coefficients i ,  1,2,3,4i  , were evaluated by curve fitting of the 

single regressions results performed for each value of h . A weighted regression, on account 

of the non-constant variance, was not deemed necessary because the ratio of the maximum to 
the minimum value of the mean squared error of the residuals did not exceed 1.5, as suggested 
in [15]. In Table 3 the values of the coefficients which characterize Equation (3) are reported. 

  1    2  3  4  

-0.906 0.867 -1.163 -1.276 

Table 3. Coefficient estimates of Equation (3). 

 Figure 6 shows the model fitted against the analysis results of SDOFs with h  equal to 1.0% 

and T  varying in the entire range considered, as well as a 3D graph of the model for period 
elongation, highlighting the dependence of its central tendency on h  and  . 

Figure 6: Central tendency of model for period elongation. Regression example of the form 

 ln ln( 1)    T T a b  used to define the model for period elongation evaluated in the case of post-yield 

hardening ratios h equal to 1.0% (a); Model for period elongation (b). 
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Finally, an analytical expression was proposed, to express the dependence of  ln T T   with the 

intact structure’s period T  and the hardening slope h , given by Equation (5) : 

  
2

1 2 3 4ln            hT T T T   (5) 

Table 4 provides the values of the parameters  i ,  1, 2,3, 4i  , appearing in Equation (5), 

estimated from curve-fitting against the regression residuals. 

1  2  3  4  

0.0472 0.1444 -0.1993 -0.0151 

Table 4. Coefficient estimates for Equation (5). 

Figure 7 shows the model of the standard deviation  ln T T   as a function of the hardening slope 

h  and the period of natural vibration T . 

 

Figure 7: Model of standard deviation  ln T T  . 

5. PUTTING THE TWO COMPONENTS OF THE MODEL TOGETHER 

Having completely defined both models, for period elongation and residual displacement, 
and recalling that period elongation was found conditionally independent of the residual 
displacement, it is possible to estimate the joint conditional distribution of the two random 
variables, given the ductility demand  , the period T  and the hardening slope h  of the initial 

structure. Due to the fact that in Equation (1) C  is given by the absolute value of a regression 

model for maxres  , it is convenient to visualize its conditional joint distribution with relative 

period elongation elonT T  by means of a Monte-Carlo sampling scheme. This entails fixing the 

values of T , h  and  , calculating the mean and standard deviation of  ln T T  conditional 

to these values from Equations (3) and (5) and then extracting a random sample of  ln T T  

values from a normal distribution  with that mean and  ln T T  , truncated according to Equation 
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(4). Subsequently, the conditional mean and standard deviation of  the ratio maxres  is obtained 

for each sampled value of   ln T T , from Equations (1) and (2),  and a maxres  value is 

randomly sampled from the corresponding normal distribution, truncated between -1 and 1. 
This amounts to random sampling of   maxln ,  resT T from their joint conditional 

distribution. Finally, C  values are obtained by taking the absolute value of maxres  . An 

example of such a representation is reported in Figure 8a, that was constructed by sampling one 
thousand value-pairs from the joint distribution of  maxres  and  ln T T . A representation 

of the marginal density of C  and its mean is also reported in Figure 8b, estimated during the 

same procedure. 

 
Figure 8. Sampling-based representation of the joint relative frequency of period elongation and residual 
displacement ratio (a), relative frequency of C (b), for the case of ductility demand 5.0  , post-yield 

hardening ratio 2.0%h   and period of the initial structure 0.9T s . 

6. MODEL VALIDATION 

To validate the predictive model a set of analyses for blind-testing the goodness-of-fit was 
performed. These analyses were organized in three groups: the first group was executed fixing 
the mass of SDOF systems and varying the elastic stiffness to achieve the required periods of 
natural vibration, whilst the analyses performed for the model evaluation, fixed the elastic 
stiffness and varied the mass to the same effect. The second group of analyses was executed 
levels of ductility demand and values of post-yield hardening ratio different from the ones used 
for fitting development the predictive model. The last group was performed using a different 
set of fifty records for IDA. To evaluate the accuracy of the predictive models in estimating 
elongated periods and residual displacements, the root mean square error (RMSE [20]) was 
computed for each group of analyses, according to Equation (6) .  

 
2

1
( )

n

ii
y y

RMSE
n




 
  (6), 
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where y  is the generic model of either  ln T T  or C , iy  is the data point from the i-th 

analysis and n  is the total number of analyses run. 
These RMSE values were employed to assess the goodness-of-fit for Equations (1),(3) in 

estimating mean C  and  ln T T . In detail, the root mean square error measure was 

computed for the three groups of test data, comparing the results with the error evaluated on the 
entire data set used for fitting development the predictive model. Table 5 provides  ln T TRMSE  

for the first and the second group of analyses defined by different values of   and T . 

Constant mass    Independent variable values ( , h  ) not used 

in fitting the model 

T    
h   ln T TRMSE        T  

h   ln T TRMSE  

 0.3 4.0 0.02 0.024   0.3 4.3 0.07 0.020 
0.6 4.0 0.02 0.016   0.6 4.3 0.07 0.013 
2.00 4.0 0.02 0.008   2.00 4.3 0.07 0.002 

Table 5. Values of  ln T TRMSE for the first and the second group of validation analyses. 

Table 6. provides 
ln ( )T TR M SE 

 for the third group of analyses executed fixing the ductility 

demand, the hardening slope and employing a new set of fifty acceleration records recorded on 
firm soil or rock and devoid of apparent directivity effects.  

Using a different set of records 

T    
h   ln T TRMSE  

0.3 5.0 0.04 0.010 
0.6 5.0 0.04 0.003 

2.00 5.0 0.04 0.016 
0.3 8.0 0.05 0.048 
0.6 8.0 0.05 0.002 

2.00 8.0 0.05 0.006 

Table 6. Values of 
ln ( )T TR M SE 

 for the third group of validation analyses. 

The values of 
ln ( )T TR M SE 

 previously reported are very close to the value evaluated on the 

data set used for fitting development the predictive model which is 0.024.  
To evaluate the accuracy of the predictive model in estimating residual displacement, the error 
measure RMSE was computed for the three groups of test data. In particular, it was evaluated 
for C 

as provided by the Equation (6). The values of RMSE for the three group of analyses are 

reported in Table 7 and Table 8. The values of CRMSE

previously reported are very close to 

the value estimated on the data set used for fitting development the predictive model which is 
0.056.  
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Constant mass    Independent variable values ( , h  ) not used 

in fitting the model 

T    
h  CRMSE


       T    

h  CRMSE


 

 0.3 4.0 0.02 0.029   0.3 4.3 0.07 0.025 
0.6 4.0 0.02 0.040   0.6 4.3 0.07 0.030 
2.00 4.0 0.02 0.065   2.00 4.3 0.07 0.077 

Table 7. Values of CRMSE


 for the first and second group of validation analyses. 

Using a different set of records 

T    
h  CRMSE


 

0.3 5.0 0.04 0.063 
0.6 5.0 0.04 0.045 

2.00 5.0 0.04 0.050 
0.3 8.0 0.05 0.085 
0.6 8.0 0.05 0.065 

2.00 8.0 0.05 0.087 

Table 8. Values of CRMSE


for the third group of validation analyses. 

7. DISCUSSION AND CONCLUSIONS 

The main purpose of this study was to present a predictive model for the central tendency 
and related record-to-record variability of residual displacements for bilinear single-degree-of-
freedom systems (SDOF). To this end, a probabilistic model for the constant-ductility residual 
displacement ratio, C , was introduced. The residual displacement ratio, defined as the 

absolute-value ratio of residual to peak transient displacement, was calculated for various 
combinations of input motion, natural vibration period and post-yielding hardening ratio, via 
nonlinear dynamic analysis designed to hold the ductility demand   constant, by appropriately 
scaling the input motion. Thus, SDOF systems with non-degrading, peak-oriented hysteretic 
response, according to the modified Ibarra-Medina-Krawinkler model, were analyzed 
subjected to a set of fifty earthquake ground motions recorded on firm site conditions. From the 
data obtained during the dynamic analyses, it was observed that the residual displacement 
demand did not exceed 52% of the peak inelastic displacement demand and is mainly affected 
on post-yield hardening ratio. In fact, the SDOF systems with higher post-yield stiffness ratio 
exhibit smaller residual displacement ratios on average, in agreement with previous studies. 

 The two-part predictive model was derived via two-stage regression: the first-stage 
regression model provides a prediction for the post-shock elongated period and the second one 
accounts for the residual displacement of the system conditional to its elongated period. It was 
found that central tendency of constant-ductility residual displacement ratios depends on the 
ductility demand, the post-yield hardening ratio and ratio of post-shock elongated period to the 
initial period of natural vibration, while the non-constant variance of the residual displacement 
ratio mainly depends on the post-yield hardening slope of the structure in its initial (undamaged) 
condition. It was also found that the period elongation has a central tendency that only depends 
on post-yield hardening ratio and ductility demand, whereas the corresponding variance also 
exhibits some dependence on the structural period of natural vibration. Finally, it should be 
mentioned that the complete model proposed, allows to estimate the joint conditional 
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distribution of the two random variables: residual displacement and period elongation, given 
ductility, period and hardening slope. 
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