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Abstract 

In nuclear applications, fragility curves are an essential element of the seismic probabilistic 
safety assessment that is performed at the level of the power plant. They are required to ac-
count for the aleatory randomness and the epistemic uncertainty generated by various 
sources of variability, such as the representation of the seismic input by intensity measures, 
the assumptions in the structural model (e.g., mechanical or geometrical parameters) and the 
confidence in the statistical estimation of the fragility parameters (i.e., related to number of 
data points used). Therefore, this study investigates the relative contributions of such varia-
bles to the dispersion of the resulting fragility functions, while ensuring the separation be-
tween aleatory and epistemic uncertainty sources, as advocated by the standards in effect in 
the nuclear industry. To this end, vector-valued fragility functions, based on two intensity 
measures, are also investigated: it appears that they allow for a partial transfer from the rec-
ord-to-record variability to an epistemic uncertainty component that is related to the descrip-
tion of the seismic loading given the hazard at the studied site. 
The proposed uncertainty decomposition is applied to the fragility assessment of the main 
steam line of a nuclear reactor: the total dispersion of the resulting fragility models is then 
decomposed into different aleatory and epistemic components. Although it is found that vec-
tor-valued intensity measures contribute to a significant part of the total dispersion, the un-
certainty due to the variability of mechanical and geometrical parameters appears to be even 
larger. 
 
Keywords: Fragility curves, intensity measures, dynamic analysis, epistemic uncertainty. 
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1 INTRODUCTION 

The quantification of the vulnerability of structures and equipment constitute a crucial step 
of the seismic Probability Safety Assessment (PSA) of a Nuclear Power Plant (NPP). To this 
end, fragility curves are common tools developed in the nuclear industry. The vulnerability of 
a component may then be represented by the so-called High Confidence Probability of Failure 
(HCLPF) capacity, which corresponds to the value of the intensity measure (IM) leading to a 
failure probability of 5% on the 95% confidence interval of the fragility curve (EPRI, 2003). 
Therefore a rigorous distinction between aleatory and epistemic uncertainty sources is re-
quired, following for instance the decomposition proposed by Kennedy et al. (1980): the total 
dispersion β of the fragility curve is decomposed into a term βR representing aleatory random-
ness (i.e., the “slope” of the curve) and a term βU representing epistemic uncertainty (i.e., the 
width of the confidence interval).  

  (1) 

where Pf is the conditional probability of reaching or exceeding a given damage state, Φ is the 
normal cumulative distribution function, α is the median of the fragility function, and Q is the 
confidence level 

Due to the complexity of a ground-motion time history, the description of the seismic load-
ing through a single IM is acknowledged as a significant source of uncertainty, usually re-
ferred to as the record-to-record variability. Several studies have addressed this issue, either 
by searching for adequate IMs (Luco & Cornell, 2007; Padgett et al., 2008) or by deriving 
vector-IM fragility functions or surfaces (Baker & Cornell, 2005; Seyedi et al., 2010; Modica 
& Stafford, 2014). Generally, a decrease in the dispersion of the fragility functions is ob-
served, however its interpretation in terms of uncertainty transfer remains to be clarified. 
Therefore, the aim of this study is to quantify the various uncertainty sources that may con-
tribute the total dispersion of the derived fragility models. In particular, the comparison be-
tween single-IM fragility curves and vector-IM fragility functions should offer insight on the 
treatment of record-to-record variability and on its impact on the aleatory uncertainty compo-
nent. 

The proposed analysis will be demonstrated on the fragility assessment of the main steam 
line of a pressurizer water reactor (Rahni et al., 2017), using a set of nonlinear time-history 
analyses (Section 2). Then, several criteria for the selection of IMs will be investigated (Sec-
tion 3), before deriving vector-IM fragility functions with multivariate regression models 
(Section 4). Finally, in Section 5, three main types of uncertainty will be compared thanks to 
different fragility formulations: (i) the aleatory uncertainty due to the record-to-record varia-
bility, (ii) the epistemic uncertainty due to the number of simulations (data points) used, and 
(iii) the epistemic uncertainty due to the variability of mechanical and geometrical parameters. 
As a result, this work will allow to decompose the total dispersion into several components, 
thus identifying the terms that deserve the most attention when computing the HCPLF. 

2 NUMERICAL MODEL AND ANALYSES 

This section details the modelling assumptions for the main steam line of the reactor, as 
well as the design of experiment for the dynamic analyses. 

2.1 Modelling assumptions 

The coupled model of a supporting structure and a secondary system is considered here, 
corresponding to the main steam line of a pressurised water reactor. The model, built and 
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computed with the CAST3M finite-element software (Combescure et al., 1982), is taken from 
Rahni et al. (2017). Structural elements, representing the containment building, are modelled 
with multi-degree-of-freedom stick formulations. The containment building has a double-wall 
structure, with an inner reinforced prestressed concrete wall and an outer reinforced concrete 
wall (see Figure 1). The steel steam line is modelled by means of beam elements, representing 
pipe segments and elbows, as well as several valves, supporting devices and stops at different 
elevations of the supporting structure. The stick models, which have the benefit of enabling 
fast computations, have been calibrated from detailed finite-element 3D models of the con-
tainment building (Rahni et al., 2017). 

 
Figure 1:Left: stick model of the containment building (inner wall, outer wall and internal structures); Right: 

steam line beam model, where the red circle points to the location of the vertical stop. 

Dynamic analyses are performed in two successive steps: first, the seismic loading is ap-
plied at the base of the building; and the resulting time history of structural displacements is 
then applied to the steam line model in order to estimate the induced strains and stresses on 
the beam elements. Rahni et al. (2017) have proposed several mechanical failure criteria for 
the verification of the steam pipe line integrity, such as the equivalent stress at any point of 
the pipe line (conservative assumption), the total plastic deformation at the pipe location cor-
responding to the containment penetration (i.e., accounting for the non-linear behaviour of the 
steel material), and the effort calculated at the beam model’s node corresponding to a vertical 
stop (see Figure 1). For simplicity purposes, the latter failure criterion is considered here for 
the fragility analysis. The threshold for the occurrence of the damage state considered (i.e., 
failure at the vertical stop) is arbitrarily set at EDPth = 400 kN for the maximum transient ef-
fort: this choice is made in order to obtain a relatively good balance between data points cor-
responding to intact or damaged states, for demonstration purposes. 

As a preliminary to the non-linear time-history analyses, a modal analysis of the supporting 
structure is carried out, in order to identify the main vibration modes (see Table 1). 
 

Mode # Period [s] 3D mass participation factor [%] 
1 0.38 61 
2 0.38 65 
3 0.15 35 
4 0.14 97 
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5 0.14 31 
 

Table 1: Modal analysis of the model of the containment building. 

Modes #1 and #2 correspond to the excitation of the structure in the Y- and X-direction, re-
spectively: due the almost symmetrical properties of the building, they are almost identical. 
Therefore, the fundamental period of the structure is taken as T1 = 0.38s, while the second one 
is taken as T2 = 0.15s (i.e., cluster of modes #3, #4 and #5). 

In order to integrate the epistemic uncertainties due to the identification of some mechani-
cal and geometrical parameters, ten variables are sampled within a Latin Hypercube Sampling 
design (see Table 2), following the values provided by Rahni et al. (2017).  
 
Variable Description Uniform distribution interval 

EIC Young’s Modulus – Inner containment [27700 – 45556] MPa 

ξRPC Damping ratio – reinforced prestressed concrete [4 – 6] % 

ξRC Damping ratio – reinforced concrete [6 – 8] % 

e1 Pipe thickness – Segment #1 [29.8 – 38.3] mm 

e2 Pipe thickness – Segment #2 [33.3 – 42.8] mm 

e3 Pipe thickness – Segment #3 [34.1 – 43.9] mm 

e4 Pipe thickness – Segment #4 [33.3 – 42.8] mm 

e5 Pipe thickness – Segment #5 [53.4 – 68.6] mm 

e6 Pipe thickness – Segment #6 [34.1 – 43.9] mm 

ξSL Damping ratio – steam line [1 – 4] % 
 

Table 2: Range of variation of the ten uncertain parameters considered, based on Rahni et al. (2017). A uniform 
distribution is assumed. 

2.2 Selection of input ground-motion records 

The conditional spectrum method (Lin et al., 2013) is used here for the selection of the in-
put ground motions, for subsequent dynamic analyses. This approach has the benefit of ena-
bling a light scaling of a set of natural records, while saving the consistency of the associated 
response spectra. Therefore, it is especially suited for the use of spectral values, such as SA 
(spectral acceleration) at various periods. The main steps of this procedure are the following: 

• Probabilistic hazard assessment of the studied site: here, an arbitrary location in 
Southern Europe is selected. Hazard curves are generated with the OpenQuake platform 
(www.globalquakemodel.org), accounting for 13 seismogenic areas which have been charac-
terized in the SHARE project (Woessner et al., 2013). 

• Selection of a period of interest and of scaling levels: here, the response spectrum is 
chosen to be conditioned on SA(T1=0.38s), with 6 scaling levels ranging from 0.185g to 
3.882g, corresponding to return periods from 20 years to 20 000 years. 

• Identification of reference earthquakes: for the studied site, the OpenQuake software 
performs a hazard disaggregation for each scaling level in order to identify a reference earth-
quake scenario. 
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• Generation of the target response spectrum and selection of spectrum-compatible 
ground-motion records (Jayaram et al., 2011). The final selection from the PEER database 
(PEER, 2013) consists of 30 records for each of the 6 scaling levels (i.e., 180 ground-motion 
records in total), as shown in Figure 2. 

The ground-motion selection using conditional spectrum implies the evaluation of the 
seismic hazard at a given site, along with the identification of reference earthquakes at various 
return periods: as a result, this approach leads to site-specific fragility functions, which are 
well suited to the context of NPPs. 

 
Figure 2: Left: conditional mean spectra and uniform hazard spectra for the 6 scaling levels; Right: conditional 

spectrum for scaling level #4 and corresponding set of 30 selected ground-motion records. 

2.3 Non-linear time-history analyses 

The 180 ground-motion records are applied to the base of the 3D model of the containment 
building, in the form of a 3-component loading. In total, 360 models of the PWR structure are 
built in the CAST3M environment, so that each ground-motion record may be applied to two 
different models, with the objective of generating enough data points. As an example, some 
simulation outcomes are presented in Figure 3, with PGA and SA(0.5s). 

 
Figure 3: IM-EDP data points, with respect to PGA (left) and SA(0.5s) (right). 
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3 SELECTION OF SCALAR IMS 

From Figure 3, it may be observed that a linear fit between the logarithms of IM and EDP 
is not justified for this specific case study: it is proposed here to apply the maximum estima-
tion approach (MLE – cf. Shinozuka et al., 2000) approach, which only requires a separation 
between the intact and damaged states (i.e., respectively blue and red points in Figure 3). To 
this end, a large number of ground-motion parameters is evaluated as potential IMs: 

 Spectral acceleration at various periods: SA(T) 
 Peak parameters (acceleration, velocity and displacement): PGA, PGV, PGD 
 Arias Intensity parameters: AI (Arias Intensity), A951, SL75-952 
 Spectral intensities: SI (Housner Intensity), ASI (Acceleration Spectral Intensity) 
 Duration parameters: RSD75-953 
 Cyclic parameters: NCy (number of effective cycles), DCy (cyclic damage parameter) 
 Energy-related parameters: NED (Normalised Energy Density) 
 Parameters related to time-integrated acceleration: CAV (Cumulative Absolute Veloci-

ty), ARMS (Root-Mean-Square Acceleration) 

The adequacy of IMs for the derivation of fragility curves has been addressed by many 
studies, using efficiency and sufficiency indicators (Luco & Cornell, 2007), statistical classi-
fiers (Lancieri et al., 2015) or the concept of hazard compatibility (Hariri-Ardebili & Saouma, 
2016). Based on these previous works, it is proposed to use three performance metrics in or-
der to estimate the adequacy of the considered IMs: 

1. Standard-deviation β of the fragility curve: although the MLE approach is used 
here, the estimated dispersion parameter β may be interpreted as the quantity described 
by Padgett et al. (2008) as the proficiency measure (i.e. combination of efficiency and 
practicability measures). 

2. Akaike Information Criterion (AIC): this criterion quantitatively assesses the good-
ness-of-fit of a given model. The AIC accounts for the number of parameters used in a 
model through the variable k, in order to penalize the over-parametrization of some 
models. In the case of scalar-IM fragility curves, k = 2 (i.e., parameters α and β). The 
AIC is then expressed as follows: 

  (2) 

where L is the likelihood function of the fragility model, which is computed as a prod-
uct of the 360 conditional probabilities corresponding to the 360 simulation outputs. 
Therefore, a small AIC value implies a great statistical fit given the data. 

3. Area under the ROC curve (AUC): the ROC curve is a possible representation of a 
ROC analysis, where the ability of a given model to be both specific and sensitive is 
evaluated by plotting the true positive rate versus the false positive rate. This approach 
has been applied by Gehl et al. (2013) to the evaluation of fragility curves (i.e. ability 
of the model to accurately predict the damage state or not, given an IM taken as a pre-
dictor). Therefore, the AUC provides a quantification of how well the fragility model 

                                                 
1 Level of acceleration that contains 95% of the Arias Intensity 
2 Slope of the Husid plot (cumulative AI over time) between 5% and 75% (or 95%) of the total AI 
3 Relative Significant Duration: length of time interval between when AI first exceeds 5% of total value and when AI first 
exceeds 75% (or 95%) of total value 
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works as a classifier: a large AUC value (i.e., area close to 1) implies a model that 
works significantly better than a random classifier (i.e., the 1:1 diagonal). 

These three criteria are first estimated for SA at various periods, ranging from 0.05s to 2s 
(see Figure 4). The curves reveal an optimum at T = 0.29s, whatever the metric considered. 
Local optima are also found at periods equal to 0.14s and 0.50s. The three identified periods 
are close to the periods that corresponding to the first two vibration modes (i.e., T1 = 0.38s 
and T2 = 0.15s). However, they are not exactly identical, and these differences may be ex-
plained by two factors, i.e. (i) the combination of superior modes that may be excited by some 
ground motions and (ii) the lengthening of the fundamental period due to the loss of elasticity 
of the structural components. 

 
Figure 4: Evolution of the three performance metrics considered, with SA at different periods. 

As a result, SA at the three identified periods (0.14s, 0.29s and 0.50s) are considered as po-
tential IMs; and their performance is compared to other ground-motion parameters (see Table 
3). 
 

IM β AIC AUC 

SA(0.14s) 0.5415 229.91 0.9166 

SA(0.29s) 0.3898 175.82 0.9547 

SA(0.50s) 0.5144 206.12 0.9363 

PGA 0.4403 198.45 0.9399 

PGV 0.4928 205.73 0.9381 

PGD 1.2622 308.93 0.8469 
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AI 0.7674 182.13 0.9485 

A95 0.4041 192.88 0.9389 

SL75 0.9471 206.91 0.9325 

SL95 0.7681 176.59 0.9508 

SI 0.5293 213.94 0.9347 

ASI 0.3775 176.23 0.9519 

RSD75 - - - 

RSD95 - - - 

NCy - - - 

DCy 0.8123 191.58 0.9412 

NED 1.4284 259.27 0.8968 

CAV 0.6012 247.15 0.8951 

ARMS 0.5728 240.45 0.9073 
 

Table 3: Estimated values of the three performance metrics, for different potential IMs. The gray cells indicate 
the five best performing IMs, for each metric. 

It is found that the parameters SA(0.29s) and ASI are the most consistent, since they show a 
satisfying performance across the three metrics. Other well performing parameters are PGA, 
PGV, AI, A95, SL95 and DCy. However, it should be noted that DCy, SL95 and A95 may not 
be easily computed from current GMPEs (see Erreur ! Source du renvoi introuvable.). The 
metrics cannot be evaluated for some parameters (RSD75, RSD95, NCy) because the fragility 
estimation has not converged due the poor IM-EDP correlation: these parameters may still be 
used as secondary IMs when deriving fragility surfaces, if the right IM combination is found. 

4 DERIVATION OF VECTOR-IM FRAGILITY FUNCTIONS 

In order to improve the predictive power of the fragility curves and to reduce the disper-
sion due to the record-to-record variability, it is proposed to combine two IMs and to use this 
vector-valued predictor for the derivation of the fragility functions. To this end, the following 
functional form for the damage probability is assumed: 

  (3) 

where erf is the error function and c1, c2 and c3 are the coefficients to be estimated (i.e., fragil-
ity parameters). 

A composite variable imV may then be introduced as follows: 

  (4) 

Using imV as the IM, the functional form in Eq. 3 is expressed as: 



P. Gehl, M. Marcilhac-Fradin, J. Rohmer, Y. Guigueno, N. Rahni and J. Clément 

  (5) 

where αV and βV are the “fragility parameters” of the composite IM imV, which are finally 
identified as follows: 

  (6) 

The coefficients c1, c2 and c3 are estimated with a MLE approach, using the same likeli-
hood function as for scalar-IM fragility curves (expect that there are now three parameters to 
find, instead of two). 

Thanks to the identification of the “composite” dispersion parameter βV, it is possible to 
compute the same three of types of performance metrics, as for the case of scalar-IM fragility 
curves. More than sixty combinations of vector-valued IMs are tested, and the results for the 
most promising couples of IMs are detailed in Table 4. 
 

IM1 IM2 βV AIC AUC 

SA(0.14s) SA(0.29s) 0.3724 173.71 0.9568 

SA(0.14s) SI 0.3464 167.19 0.9508 

SA(0.29s) SA(0.50s) 0.3834 173.74 0.9571 

SA(0.29s) PGA 0.3370 161.33 0.9424 

SA(0.29s) PGV 0.3718 171.22 0.9591 

SA(0.29s) AI 0.4687 171.69 0.9530 

SA(0.29s) SI 0.3659 167.43 0.9610 

SA(0.29s) RSD95 0.4371 174.11 0.9559 

SA(0.50s) PGA 0.3348 158.25 0.9439 

PGA PGV 0.3389 166.18 0.9532 

PGA AI 0.5027 170.79 0.9468 

PGA SI 0.3225 155.43 0.9339 

PGA ASI 0.3447 169.06 0.9416 

PGV ASI 0.3668 173.61 0.9526 
 

Table 4: Estimation values of the three performance metrics, for different vector-valued IMs. The gray cells in-
dicate the three best performing couples of IMs, for each metric. 

It is found that the vector-valued IMs tend to perform slightly better than the scalar IMs, 
judging from the values of the three metrics. Some scalar IMs that were not identified as ade-
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quate (e.g., RSD95) become much more efficient when combined together. Some examples of 
vector-valued fragility functions are displayed in Figure 5, for selected combinations of IMs. 

 
Figure 5: Iso-probability lines corresponding to some examples of vector-valued fragility function (i.e., probabil-
ities of 0.05, 0.16, 0.5 0.84 and 0.95). The dots represent the outcomes of the NLTHAs in the vector-IM space. 

5 COMPARATIVE ANALYSIS OF UNCERTAINTY SOURCES 

This section discusses a set of procedures for the quantitative estimation of some uncertain 
components, namely the record-to-record variability, the uncertainty due to the number of da-
ta points, and the in-situ variability due to the variability of mechanical and geometrical pa-
rameters 

5.1 Decomposition of the record-to-record variability 

The contribution of the record-to-record variability to the global uncertainty structure may 
be estimated thanks to the comparison between scalar-IM fragility curves and vector-IM fra-
gility surfaces. To this end, as an example, it is proposed to reduce the fragility surface w.r.t. 
[PGA ; SA(0.29s)] (see top left plot in Figure 5) into a fragility curve w.r.t. SA(0.29s) only. 
This operation should consider the correlation between the two IMs, in order to preserve the 
hazard consistency of the applied loading. Therefore, a first step consists in estimating the dis-
tribution of the secondary IM (i.e, PGA) w.r.t. SA(0.29s), using the dataset of the input 
ground-motion records: a median line and its 16%-84% confidence intervals are then plotted 
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(see Figure 6, left). The space delimited by this interval provides also practical guidance on 
the validity domain of the fragility surface, in the sense that it identifies the IM combinations 
that are very unlikely. 

 
Figure 6: Left: fragility surface w.r.t. PGA and SA(0.29s), the solid blue line represents the median of the PGA-
SA(0.29s) distribution and the dashed blue lines the 16%-84% confidence intervals; Right: equivalent fragility 

curves w.r.t. SA(0.29s). 

It is then proposed to generate “slices” of the fragility surfaces by following the distribu-
tion of PGA as a function of SA(0.29s) (i.e., solid and dashed lines in Figure 6, left). As a re-
sult, the “slices”, now represented as a function of the single IM SA(0.29s), may be compared 
to the original scalar-IM fragility curve. The fragility curves in Figure 6, right, are identified 
as follows: 

 Solid red line: “mean” fragility curve corresponding to the scalar-IM fragility curve, 
derived w.r.t. SA(0.29s) only; 

 Solid blue line: median fragility curve corresponding to the “median” slice of the 
fragility surface; 

 Dashed blue lines: 16%-84% confidence intervals around the median fragility, cor-
responding to the lower and upper bounds of the slices of the fragility surfaces. 

Finally, this family of fragility functions corresponds to the probabilistic framework by 
Kennedy et al. (1980), where the identification of aleatory and epistemic uncertainties (βR and 
βU, respectively), as introduced in Eq. 1. The mean fragility curve, w.r.t. to SA(0.29s), has a 
total standard deviation βtot = (βR

2 + βU
2)1/2 = 0.390. Meanwhile, the median fragility curve, 

obtained from the fragility surface w.r.t. PGA and SA(0.29s), has a standard deviation of 
0.349, which actually corresponds to the aleatory randomness term only (i.e., βR). The confi-
dence intervals obtained from the graphical construction in Figure 6 are then used to estimate 
the epistemic uncertainty term, i.e. βU ≈ 0.174. 

It may be concluded that the vector-IM fragility functions lead to the transfer of a part of 
the record-to-record variability into a form of epistemic uncertainty, which is related to the 
description of the seismic loading given the hazard at the specific site. 

5.2 Uncertainty due to the number of data points 

The epistemic uncertainty due to the number of data points in the simulations, i.e. related 
to the quality of the statistical estimation of the fragility parameters, may also be evaluated in 
the case of vector-IM fragility functions. To this end, a bootstrap sampling approach is ap-
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plied to the fragility surface w.r.t. of PGA and SA(0.29s). The outcomes of the bootstrap sam-
pling are displayed in Figure 7, in the case of 16%-84% confidence intervals.  

 
Figure 7: Left: fragility surface w.r.t. PGA and SA(0.29s), with the 16%-84% confidence intervals (dashed lines) 
due to the statistical estimation; Right: equivalent fragility curves  w.r.t. SA(0.29s) and related 16%-84% confi-

dence intervals due to the statistical estimation. 

In order to compare these confidence intervals with the ones estimated for the correspond-
ing scalar-IM fragility curves, the fragility surface is reduced to a scalar case w.r.t. SA(0.29s) 
only, following the same approach as before (i.e., use of a “median” slice of the fragility sur-
face). The curves in Figure 7, right, reveal a similar order of magnitude for the confidence in-
tervals due to the amount of data points, both for the single-IM fragility curve (βU = 0.043) 
and for the vector-IM fragility function (βU = 0.048). 

5.3 Uncertainty due to the variability of mechanical and geometrical parameters 

Based on the 360 randomly generated structures, a new vector-IM fragility curve is derived 
by incorporating the effect of the epistemic uncertainties related to the p = 10 mechanical and 
geometrical parameters (described in Table 2). This is done by adding linear terms in Eq. 3 as: 

  (7) 

where xi is the ith uncertain parameter and the corresponding regression coefficient. 
When the ten parameters are considered at the same time, it is found that the MLE-based 

regression cannot converge, due to the limited number of data points. Therefore, partial com-
binations of parameters are tested until the most influent parameters are identified. As a result, 
the MLE regression on Eq. 7 has been carried out with three geometrical parameters, namely 
the thicknesses e2, e4 and e6 (see Table 5). The analysis by the p-value of the Wald test has 
been used to decide whether the corresponding parameter is significant or not, using a signifi-
cance threshold at 5%. Interestingly, the mechanical parameters barely affect the mean of the 
vector-IM fragility function (at 5% significance). 

 
Parameter Regression coefficient Std. Error p-value (Wald statistic) 

c1 - Intercept -22.008 4.030 4.73e-8 

c2 - SA(0.29s) 1.991 0.359 2.98e-8 
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c3 - PGA 1.284 0.342 1.75e-4 

c4 - Thickness e2 95.504 46.303 0.0392 

c5 - Thickness e4 135.553 46.184 0.0033 

c6 - Thickness e6 98.819 44.217 0.0254 
 

Table 5: Regression coefficients, standard error and p-value of the Wald statistic of the vector-IM fragility func-
tion. 

On this basis, a new vector-IM fragility function is plotted in Figure 8, left, by incorporat-
ing only the significant geometrical parameters. The median surface is obtained by setting the 
thickness parameters at the median of their uniform distribution interval (cf. Table 2), while 
its 16%-84% confidence bounds account for the corresponding variations of these parameters. 
The same approach is applied to the construction of the single-IM fragility curve, enabling the 
comparison between the two approaches (see Figure 8, right). 

 
Figure 8: Left: fragility surface w.r.t. PGA and SA(0.29s) with the 16%-84% confidence intervals (dashed lines) 

due to variability in the parameters; Right: equivalent fragility curves  w.r.t. SA(0.29s) and related 16%-84% 
confidence intervals due to variability in the parameters. 

These fragility models, based on the disaggregation of the variability of some mechanical 
or geometrical, show a significantly reduced dispersion, when compared to the ones that do 
not use these parameters as input variables (i.e., models in Figures 6 and 7). However, it 
should be noted that some regression coefficients have been estimated with a significant 
standard error (see Table 5), which implies that much more data points from simulations 
should be necessary in order to get stable estimates. 

5.4 Discussion on the respective contribution of uncertainty sources 

The previous statistical analyses have helped identifying the uncertainty sources at play in 
different fragility modelling strategies (see Figure 9): 

 Single-IM fragility curve: the aleatory dispersion βR includes most of the variability, 
with a very small contribution of the epistemic uncertainty due to the number of da-
ta points. 
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 Vector-IM fragility function: a part of the record-to-record variability may be inter-
preted as an epistemic uncertainty term. The uncertainty term due to the number of 
data points is slightly larger, without becoming significant. 

 Vector-IM fragility function accounting for mechanical and geometrical parame-
ters: a multivariate MLE-based regression has allowed to explicitly account for the 
most influent mechanical and geometrical, further reducing the aleatory dispersion. 

 
Figure 9: Decomposition of the uncertainty sources in terms βR (aleatory) and βU (epistemic), depending on the 

modelling strategy used. 

It may be noted that, for the considered application, the use of vector-IMs contributes to a 
significant part of the total dispersion, although the uncertainty due to the variability of me-
chanical and geometrical parameters appears to be much larger. When computing the HCLPF, 
the uncertainty decomposition from Figure 9 is preserved, according to the following equation 
derived from Eq. 1: 

  (8) 

Therefore, when assessing a given element from an NPP, its HPCLPF may be gradually 
reduced if the following measures are taken to lower the epistemic uncertainty term: 

 Reduction of βU due to the number of data points, by performing more simulations 
(i.e., increased confidence in the statistical estimation); 

 Reduction of βU due to the description of the seismic loading, by performing a vec-
tor probabilistic hazard assessment of the considered site (i.e., more accurate 
knowledge of the excepted vector-IM distribution); 

 Reduction of βU due to the variability of mechanical and geometrical parameters, by 
testing or qualifying the materials used (i.e., increase of knowledge). 

6 CONCLUSIONS 

This study has confronted the concept of vector-IM fragility functions to the probabilistic 
framework commonly employed in nuclear applications. This exercise has then allowed for a 
systematic analysis of various sources of aleatory or epistemic uncertainty. 

Regarding the selection of IMs, carefully selected vector-IMs make excellent candidates in 
terms of IM sufficiency and efficiency, when compared to scalar IMs. As a result, vector-IM 
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fragility functions tend to generate less dispersion (i.e., aleatory uncertainty due to record-to-
record variability) than single-IM fragility curves: this difference may be interpreted as a par-
tial transfer from the record-to-record variability to an epistemic uncertainty component that 
is related to the description of the seismic loading given the hazard at the studied site. Howev-
er, in the present example, it appears that the epistemic uncertainty due to the variability of 
mechanical and geometrical parameters is still much larger. 

Although a wide range of statistical tools are available for the quantification and propaga-
tion of sources of uncertainties, it appears that all the epistemic uncertainties usually cannot 
be adequately covered and accounted for (e.g., much more simulations would be required in 
order to accurately model the variability of the mechanical and geometrical parameters). In 
most cases, expert judgment would be necessary in order to constrain the assumptions and to 
interpret the simulation results. 

Finally, the present study has followed the lognormal assumption for the functional form of 
the fragility functions. This constraint, while convenient for the combination of nested uncer-
tainty terms, is bound to introduce significant biases in the statistical estimates (i.e., the out-
comes of the MLE-based regression). A similar analysis based on undefined functional forms 
would also be able to deliver valuable lessons. 
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